Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(5): e10558, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693059

RESUMO

High positive charge-induced toxicity, easy lysosomal degradation of nucleic acid drugs, and poor lesion sites targeting are major problems faced in the development of gene carriers. Herein, we proposed the concept of self-escape non-cationic gene carriers for targeted delivery and treatment of photocontrolled hepatocellular carcinoma (HCC) with sufficient lysosome escape and multiple response capacities. Functional DNA was bound to the surface of biotin-PEG2000-modified graphitic carbon nitride (Bio-PEG-CN) nanosheets to form non-cationic nanocomplexes Bio-PEG-CN/DNA. These nanocomposites could actively target HCC tissue. Once these nanocomplexes were taken up by tumor cells, the accumulated reactive oxygen species (ROS) generated by Bio-PEG-CN under LED irradiation would disrupt the lysosome structure, thereby facilitating nanocomposites escape. Due to the acidic microenvironment and lipase in the HCC tissue, the reversible release of DNA could be promoted to complete the transfection process. Meanwhile, the fluorescence signal of Bio-PEG-CN could be monitored in real time by fluorescence imaging technology to investigate the transfection process and mechanism. In vitro and in vivo results further demonstrated that these nanocomplexes could remarkably upregulate the expression of tumor suppressor protein P53, increased tumor sensitivity to ROS generated by nanocarriers, and realized effective gene therapy for HCC via loading P53 gene.

2.
Adv Healthc Mater ; 12(29): e2301485, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37463681

RESUMO

Hypoxia is an important feature, which can upregulate the hypoxia-inducible factor-1α (HIF-1α) expression and promote the activation of hepatic stellate cells (HSCs), leading to liver fibrosis. Currently, effective treatment for liver fibrosis is extremely lacking. Herein, a safe and effective method is established to downregulate the expression of HIF-1α in HSCs via targeted delivery of VA-PEG-modified CNs-based nanosheets-encapsulated (VA-PEG-CN@GQDs) HIF-1α small interfering RNA (HIF-1α-siRNA). Due to the presence of lipase in the liver, the reversible release of siRNA can be promoted to complete the transfection process. Simultaneously, VA-PEG-CN@GQD nanosheets enable trigger the water splitting process to produce O2 under near-infrared (NIR) irradiation, thereby improving the hypoxic environment of the liver fibrosis site and maximizing the downregulation of HIF-1α expression to improve the therapeutic effect, as demonstrated in liver fibrosis mice. Such combination therapy can inhibit the activation of HSCs via HIF-1α-mediated TGF-ß1/Smad pathway, achieving outstanding therapeutic effects in liver fibrosis mice. In conclusion, this study proposes a novel strategy for the treatment of liver fibrosis by regulating the hypoxic environment and the expression of HIF-1α at lesion site.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , RNA Interferente Pequeno/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Cirrose Hepática/terapia , Hipóxia
3.
J Mater Chem B ; 11(14): 3186-3194, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946887

RESUMO

Lipid droplets (LDs) and their autophagy by lysosomes are closely related to a variety of physiological and pathological conditions. Therefore, identifying and tracking LDs and the dynamic process of autophagy can provide useful information for the diagnostics and treatment of related diseases. However, few organic small molecule-based fluorescent probes can specifically recognize LDs and dynamically track their autophagy process. Herein, we synthesized a "discoloration" fluorescent bioprobe DPABP-BI with distinguishable features including red fluorescence emission (630 nm), large Stokes shift (145 nm), two-photon excitation and outstanding photostability and biocompatibility. In particular, LDs could be specifically identified via the red fluorescence emission of DPABP-BI (colocalization constant of 0.98), while autophagolysosomes could be visualized via the green fluorescence emission of its acid-hydrolyzed product (colocalization constant of 0.90) to track the autophagy dynamic process. In addition, DPABP-BI enabled the specific recognition of fatty substances in zebrafish larvae. In this study, a two-photon excited red light small molecule probe was constructed to identify LDs and track their autophagy dynamic process by changing the fluorescence emission wavelength.


Assuntos
Técnicas Biossensoriais , Gotículas Lipídicas , Animais , Peixe-Zebra , Lisossomos , Autofagia
4.
J Mater Chem B ; 10(28): 5430-5438, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35775960

RESUMO

The construction of non-viral gene delivery faces two major challenges: cytotoxicity caused by high cationic charge units and easy degradation by lysosomes. Herein, highly water-dispersible polymeric carbon nitride (PCN) nanosheets were utilized as the core to construct a light-controlled non-cationic gene delivery system with sufficient lysosomal escape ability. In this system, these nanosheets exhibited efficient DNA condensation, outstanding biocompatibility, transfection tracking, light responsiveness and high transfection efficiency. Once PCN-DNA was taken up by the tumor cells, the accumulated ROS generated by photosensitizers (PSs) under light irradiation would destroy the structure of lysosomes, promote the escape of PCN-DNA and increase the efficiency of gene transfection. Simultaneously, the gene transfection process could be tracked in real time through fluorescence imaging technology, which was conducive to investigate the transfection mechanism. In vitro and in vivo experiments further confirmed that PCN nanosheets loaded with the P53 gene were beneficial to the regeneration of the P53 apoptotic pathway, increased tumor sensitivity to PSs, and further induced tumor cell apoptosis. In summary, the highly water-dispersible PCN nanosheets were applied to light-controlled self-escaping gene delivery for the first time, and tumor gene therapy was successfully realized.


Assuntos
Neoplasias , Humanos , Cátions/química , DNA/química , Lisossomos/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Nitrilas , Polímeros/química , Água
5.
Phytother Res ; 36(11): 4167-4182, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35778992

RESUMO

Hepatocytes has been confirmed to undergo EMT and can be converted into myofibroblasts during hepatic fibrogenesis. However, the mechanism of hepatocyte EMT regulation in hepatic fibrosis, particularly through HSP27 (human homologue of rodent HSP25), remains unclear. Mangiferin (MAN), a compound extracted from Mangifera indica L, has been reported to attenuate liver injury. This study aimed to investigate the mechanisms underlying HSP27 inhibition and the anti-fibrotic effect of MAN in liver fibrosis. Our results revealed that the expression of HSP27 was remarkably increased in the liver tissues of patients with liver cirrhosis and CCl4 -induced fibrotic rats. However, HSP27 shRNA treatment significantly alleviated fibrosis. Furthermore, MAN was found to inhibit CCl4 - and TGF-ß1-induced liver fibrosis and reduced hepatocyte EMT. More importantly, MAN decreased HSP27 expression to suppress the JAK2/STAT3 pathway, and subsequently blocked TGF-ß1/Smad signaling, which were consistent with its protection against CCl4 -induced EMT and liver fibrosis. Together, these results suggest that HSP27 may play a crucial role in hepatocyte EMT and liver fibrosis by activating JAK2/STAT3 signaling and TGF-ß1/Smad pathway. The suppression of HSP27 expression by MAN may be a novel strategy for attenuating the hepatocyte EMT in liver fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1 , Animais , Humanos , Ratos , Fibrose , Hepatócitos , Proteínas de Choque Térmico HSP27/metabolismo , Janus Quinase 2 , Cirrose Hepática/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-35591865

RESUMO

Objective: This study aims to evaluate the efficacy of various conventional synthetic DMARDs, including Tripterygium wilfordii Hook F (TwHF) for treating rheumatoid arthritis (RA) by network meta-analysis. Methods: We retrieved the related literature from online databases and supplemented it by using a manual retrieval method. Data was extracted from the literature and analyzed with STATA software. Results: A total of 21 trials (5,039 participants) were identified. Assessment of ACR20 response found that TwHF combined with methotrexate (MTX) had the greatest probability for being the best treatment option among the treatments involved, while TwHF used singly was second only to TwHF combined with MTX. Assessment of ACR50 response found that TwHF combined with MTX ranked second in all treatment options after cyclosporine A (CsA) combined with leflunomide (LEF) and TwHF alone, followed by TwHF combined with MTX. Assessment of ACR70 response found that CsA combined with LEF ranked first, TwHF combined with LEF ranked second, TwHF combined with MTX ranked third, and TwHF used singly ranked fourth. In the safety analysis, TwHF had the least probability of adverse event occurrence, followed by TwHF combined with MTX, which ranked first and second, respectively. Conclusion: Compared with the current csDMARDs for treating RA, the efficacy of TwHF was clear, and TwHF combined with MTX performed well under various endpoints. In the future, large, rigorous, and high-quality RCTs are still needed to confirm the benefits of TwHF therapy on RA.

7.
ACS Appl Bio Mater ; 4(9): 7111-7122, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006943

RESUMO

Although a plethora of gene carriers have been developed for potential gene therapy, imageable stimuli-responsive gene vectors with fast access to the nucleus, high biocompatibility, and transfection efficiency are still scarce. Herein, we report the design and synthesis of four dendrite-shaped cationic liposomes, MPA-HBI-R/DOPE (R: n-butyl, 1; n-octyl, 2; n-dodecyl, 3; palmyl, 4), prepared via esterification of 4-alkoxybenzylideneimidazolinone containing aliphatic chains of different lengths (HBI-R), the green fluorescent protein (GFP) chromophore, with a di[12]aneN3 unit. Liposomes were fabricated via the self-assembly of MPA-HBI-R, assisted with 1,2-dioleoyl-sn-glycerol-3-phosphorylethanolamine (DOPE). These liposomes (MPA-HBI-R/DOPE) exhibited efficient DNA condensation, pH-responsive degradation, excellent cellular biocompatibility (up to 150 µM), and high transfection efficiency. Molecular docking experiments were also used to verify the optimal interaction between MPA-HBI-R and DNA, as well as the fluorescence enhancements. In particular, MPA-HBI-2/DOPE delivered DNA into the nucleus in less than an hour, and its luciferase transfection activity was more than 10 times that by Lipo2000, across multiple cell lines. The GFP chromophore conjugation allowed trackable intracellular delivery and release of DNA in real time via fluorescence imaging. Furthermore, efficient red fluorescent protein (RFP) transfection in zebrafish, with an efficiency of more than 6 times that by Lipo2000, was also achieved. The results not only realized, for the first time, the combination of gene delivery and GFP-simulated light emission, allowing fluorescent tracking and highly efficient gene transfection, but also offered valuable insights into the use of biomimetic chromophore for the development of the next-generation nonviral vectors.


Assuntos
Lipossomos , Luminescência , Animais , DNA/genética , Proteínas de Fluorescência Verde/genética , Simulação de Acoplamento Molecular , Transfecção , Peixe-Zebra/genética
8.
ACS Appl Mater Interfaces ; 12(36): 40094-40107, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805811

RESUMO

Although a plethora of nonviral gene vectors have been developed for potential gene therapy, imageable gemini surfactants with stimuli-responsiveness and high transfection efficiency are still scarce for gene delivery. Herein, three gemini amphiphiles (DEDPP-4/8/12) consisting of an aggregation-induced emission (AIE) central fluorophore: 5,6-diphenylpyrazine-2,3-diester (DEDPP), decorated with triazole-[12]aneN3 as the hydrophilic moiety and alkyl chains of various lengths as the hydrophobic moiety, were designed and synthesized for trackable gene delivery via optical imaging. All three amphiphiles exhibited ultralow critical micelle concentrations (CMCs) (up to 3.40 × 10-6 M), prominent two-photon absorption properties, and solvatochromic fluorescence. Gel electrophoresis assays demonstrated that the migration of plasmid DNA was completely retarded after condensation with these gemini amphiphiles at low concentrations (up to 10 µM). In addition, the ester bond in these amphiphiles may facilitate vector degradation and DNA release, in response to esterase and the acidic environment inside cells. Upon self-assembly with DOPE to form liposomes, DEDPP-8/DOPE achieved the best transfection efficiency in four cell lines, and the transfection efficiency of DEDPP-8/DOPE in HeLa cell lines was 23.5-fold higher than that of Lipo2000, which is unusually high for small organic molecule-based nonviral vectors. Furthermore, excellent transfection efficiency of DEDPP-8/DOPE was obtained in the presence of serum, and the red fluorescence protein (RFP) gene was successfully transfected in zebrafish embryos. Both one- and two-photon fluorescence imaging clearly demonstrated the delivery process of plasmid DNA. This study demonstrated that gemini-type amphiphiles composed of a two-photon fluorophore core conjugated with triazole-[12]aneN3 via an ester bond afforded an unprecedentedly high transfection efficiency with excellent biocompatibility, which may provide new insights for the design and development of multifunctional nonviral gene vectors for imageable gene delivery.


Assuntos
Calcitriol/análogos & derivados , Corantes Fluorescentes/química , Técnicas de Transferência de Genes , Imagem Óptica , Pirazinas/química , Tensoativos/química , Calcitriol/síntese química , Calcitriol/química , Células Cultivadas , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Estrutura Molecular , Tamanho da Partícula , Fótons , Pirazinas/síntese química , Propriedades de Superfície , Tensoativos/síntese química
9.
J Mater Chem B ; 8(17): 3869-3879, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222754

RESUMO

With the aim to develop a novel multifunctional gene delivery system that may overcome the common barriers of gene transfection, near-infrared fluorescent triphenylamine-pyrazine was modified with a DNA condensing triazole-[12]aneN3 moiety through different length alkyl ester linkages to afford three new non-viral gene vectors, TDM-A/B/C. All compounds showed prominent solvatochromic fluorescence (Stokes shift of up to 383 nm) and two-photon absorption properties (σ2P to 101 GM), and exhibited strong aggregation-induced emission (AIE). Gel electrophoresis demonstrated that plasmid DNA was completely condensed at a concentration of 10 µM (TDM-A), 14 µM (TDM-B) and 16 µM (TDM-C), and released in esterase and acidic environment. SEM demonstrated that the three compounds were able to self-assemble and co-aggregate with DNA to form regular nanoparticles. Experiments demonstrated that TDM-A/B/C was able to integrate with DNA through electrostatic interactions and supramolecular stacking, and the short alkyl linkage favored the strong interaction with DNA. Among the three compounds, TDM-B showed the best luciferase and GFP transfection activities in the presence of DOPE, which were 156% and 310% higher than those of Lipo2000, respectively. The transfection process of DNA was clearly traced through one- and two-photon fluorescence microscopy imaging. Cellular uptake inhibition assay indicated that the DNA complex entered the cell mainly via clathrin-independent endocytosis. Furthermore, the in vivo transfection experiments of TDM-B/DOPE were successfully implemented in zebra fish embryos, and the GFP gene expression level was superior to that of Lipo2000 (200%). Finally, this study clearly unraveled that the length of the alkyl linkage affected the DNA condensation and transfection activity, which can serve as a base for the future rational design of non-viral gene vectors.


Assuntos
Compostos de Anilina/química , Compostos Macrocíclicos/química , Imagem Óptica , Fótons , Poliaminas/química , Pirazinas/química , Compostos de Anilina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Lipossomos/química , Compostos Macrocíclicos/farmacologia , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Poliaminas/farmacologia , Pirazinas/farmacologia , Propriedades de Superfície , Células Tumorais Cultivadas
10.
ACS Appl Mater Interfaces ; 11(46): 42975-42987, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31657894

RESUMO

Three nonviral gene vectors, TPA-BI-A/B/C, have been designed and synthesized by the combination of one or two hydrophilic [12]aneN3 moieties and two-photon fluorescent triphenylamine-benzylideneimidazolone (TPA-BI) units through different ester linkage. Spectroscopic characterization demonstrated that TPA-BI-A/B/C had strong aggregation-induced emissions (AIE), large Stokes shifts (230, 284, and 263 nm), and large two-photon absorption cross sections (δ2PA) (67, 592, and 80 GM). Gel electrophoresis indicated that the three compounds completely condensed DNA at 15 µM in the presence of DOPE, and showed the lipase- and pH-triggered reversible release of DNA and the fluorescent recognition of the different lengths of ssDNA and dsDNA. The optimal TPA-BI-C/DOPE-mediated luciferase and GFP activity was 146% and 290% higher than those of Lipo2000. The transfection process of DNA could be traced clearly through one- and two-photon fluorescence spectra, and displayed in a 3D-video. TPA-BI-C/DOPE successfully transfected the GFP gene into zebrafish, which was superior to Lipo2000 (192%). In conclusion, TPA-BI-C/DOPE is the first nonviral gene vector with the abilities of pH/lipase enzyme responsiveness, one/two-photon fluorescent tracking of intracellular delivery of DNA, and successful transfection in vivo and in vitro, even better than Lipo2000.


Assuntos
Corantes Fluorescentes , Técnicas de Transferência de Genes , Vetores Genéticos , Fosfatidiletanolaminas , Células A549 , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Vetores Genéticos/química , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Humanos , Microscopia de Fluorescência por Excitação Multifotônica , Fosfatidiletanolaminas/sangue , Fosfatidiletanolaminas/farmacologia
11.
Talanta ; 148: 285-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26653451

RESUMO

A new diffusive gradients in thin films (DGT) device, using Pb(II) ion-imprinted silica (IIS) as the binding agents and commercial cellulose acetate dialysis (CAD) membrane as the diffusion layer (CAD/IIS-DGT), has been developed and evaluated for sampling and measurement of free Pb(II) species. The CAD/IIS-DGT devices were successfully applied to the measurement of free Pb(II) species in synthetic solutions, in natural freshwaters and in industrial wastewaters. The CAD/IIS-DGT provides reliable results over pH range of 4.5-6.5 and a wide range of ionic strength from 1.0×10(-3) to 0.7 mol L(-1). The concentrations of the free Pb(II) species in synthetic solution containing different concentrations of ligands measured by CAD/IIS-DGT showed a good agreement with the value measured by Pb-ion selective electrode. Field deployments of the CAD/IIS-DGT devices allowed accurate measurements of the concentrations of free Pb(II) species.


Assuntos
Chumbo/análise , Impressão Molecular/métodos , Dióxido de Silício/química , Adsorção , Difusão , Eletroforese em Acetato de Celulose/métodos
12.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 6): o721, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24940290

RESUMO

In the title compound, C16H10N4O2·0.17H2O, prepared by the one-step condensation reaction of isatin with hydrazine hydrate under microwave irradiation, the complete organic mol-ecule is generated by crystallographic inversion symmetry and therefore exists in an S-trans conformation. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds, generating a three-dimensional framework with [001] channels, which are occupied by the disordered water mol-ecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA